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We investigate Anderson localization of light as occurring in ultrashort excitations. A theory based on time
dependent coupled-mode equations predicts universal features in the spectrum of the transmitted pulse. In
particular, the process of strong localization of light is shown to correspond to the formation of peaks in both
the amplitude and in the group delay of the transmitted pulse. Parallel ab initio simulations made with
finite-difference time-domain codes and molecular dynamics confirm theoretical predictions, while showing
that there exists an optimal degree of disorder for the strong localization.
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I. INTRODUCTION

In the last years, progress in laser technology resulted in
the generation of pulses with duration of few optical
cycles,1–4 whose spectral content is an optical frequency
comb, i.e., a discrete, regularly spaced, series of sharp lines
in the region of optical frequencies. These new laser sources
have favored many outcomes in fundamentals research and
applications, ranging from optical frequency metrology5–7 to
pulse synthesis.8,9 In the same years, the systematic study of
light propagation in disordered dielectrics stirred particular
attention.10–17 In these systems, the multiple scattering can
become so strong that the diffusive approximation for the
photon transport lapses and the randomness of the three-
dimensional �3D� structure leads to the emergence of Ander-
son localizations, i.e., long living exponentially localized
electromagnetic resonances. In several respects, the observa-
tion of these localizations is still largely debated.18–24 One of
the leading issue is determining universal features of light
localization dynamics in order to infer their excitation from
the analysis of the spectrum �amplitude and phase� of the
transmitted pulse. In one dimension transmission fluctuations
can be related to exponentially localized or to delocalize
necklace states, both mediating a resonantlike behavior �see,
e.g., Refs. 25 and 26�. In 3D, with reference to dielectric
samples, emphasis has been given to the shape of the tail of
the transmitted pulse, that should display deviations from a
diffusive exponential trend in the presence of long living
states.19 However, for a broadband excitation, such an analy-
sis cannot be directly applicable because: �i� the diffusion
approximation may not hold true in whole excitation spec-
trum, and �ii� material dispersion should be accounted for. In
addition, when dealing with ultrafast laser sources, one could
argue on which is the frequency-resolved optical signal
�FROG� in the presence of Anderson localization �see, e.g.,
Ref. 27�, or which is the corresponding amplitude/phase pro-
file in the spectrum and if they display universal distinctive
features. In this respect, a time-resolved electromagnetic ap-
proach is unavoidable, especially for dealing with a fre-
quency dependent refractive index and broadband excita-
tions.

In this paper, we investigate the response of a random
medium to a frequency comb. We tackle this issue by time-
domain coupled mode theory �TDCMT�,28 and by an ab ini-

tio parallel numerical approach that employs finite-difference
time-domain �FDTD� codes combined with a molecular dy-
namics �MD�,29 which allow to completely simulate the dy-
namics of Maxwell’s equations �FDTD� inside realistic con-
figurations of scatterers �MD�. We compare materials with
different index contrast, and, for a strongly scattering me-
dium, we vary the filling fraction as a measure of the degree
of randomness. Theory and simulations demonstrate that the
transmitted pulse contains spectral universal features of the
Anderson localization of light, which, according to the
FDTD simulations, is mostly evident at a specific amount of
disorder.

II. THEORY

In our theoretical picture, the impinging laser pulse
�propagation direction z, input surface at z=0� excites a se-
ries of Anderson localizations at different frequencies, which
are expected in proximity of the surface of the sample; en-
ergy is then transported in the sample by coupling between
localized states at the same frequencies. We focus on the
output signal at the input propagation direction, thus only
those localized modes that are overlapped with the beam
contribute to the output, while the others behave as radiative
losses. The coupling between resonances at different fre-
quencies will not contribute to the energy transport, indeed
their beating will average out. Such an approach can in prin-
ciple applied to any dimensionality to describe transport of
energy mediated by coupled localized resonances. We con-
sider M chains of uncoupled oscillators, each corresponding
to a resonance ����=1,2 , . . . ,M� with amplitude a�,n with
n=1, . . . ,N, where N is the number of Anderson localizations
at frequency �� overlapped with the input beam �Fig. 1� �we

FIG. 1. �Color online� Localization couplings and energy propa-
gation scheme in the TDCMT.
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group resonances at the same position z �within a localization
length� into a single oscillator a�,n�. The propagation of en-
ergy at frequency �� is then given by the linear TDCMT
equations,

i
da�,n

dt
= ��� − i

1

��,n
�a�,n + �n−1,�an−1,� + �n+1,�an+1,�, �1�

with �n,� accounting both for the emission losses in direc-
tions different from the input beam and for material absorp-
tion. The coeffcients � in Eq. �1� describe the coupling be-
tween modes and, in general, they also account for material
dispersion. For n=1, the previous equations contain
�0,�a0,���2 /�esI����, which is the fraction of the signal
coupled at frequency ��, being sI���� as the amplitude of the
supercontinuum at �� and 2 /�e as the coupling loss rate in
the z direction �Fig. 1�.28 Since the input beam will exponen-
tially decrease with the sample length, we assume that only
one single mode for each �� �the nearest to the input surface
z=0� will be directly excited by the input beam. For n�1,
an−1,��an+1,�� is the Anderson localization at �� preceding
�following� a�,n. The transmitted signal is then st=�N,�aN,�,
being � as the coupling coefficient with the output region.
The transmission T=st /si is then found by solving Eq. �1� in
the Fourier domain � d

dt → i��,

st���
si����

= iN+2�N,�	
k=1

N

G�k,�� , �2�

being G�k ,�� as the following continued fraction:

G�k,�� = 
 �k−1,�

i�� − ��� + 1
�k

+ �k+1,�G�k + 1�
, k � N

0, k � N .
� �3�

Universal properties of the system can be demonstrated from
Eqs. �2� and �3� by looking at the two physical observables:
the transmittance �T�2 and the group delay d�

d� �with � being
the phase of T�. We begin by demonstrating with mathemati-
cal induction the property J�G�m ,��� ��=��

=0. This is trivi-
ally fulfilled for G�N�, and also for G�k�,

J�G�k�� =
− �k−1,��� − ��� + �k+1,�J�G�k + 1���

�i�� − ��� +
1

�k
+ �k+1,�G�k + 1��2 , �4�

if J�G�k+1,��� ��=��
=0. In the same way, we can verify that

R� dG�k,��
d� � ��=��

=0 and, as a corollary, J�G�k ,��2� ��=��
=0,

R�G�k ,��2 dG�k,��
d� � ��=��

=0 and J� d2G�k,��
d�2 � ��=��

=0. By induc-
tion, we then obtain

�d�G�k,���2

d�
�

�=��

= 0, �d2�k,�

d�2 �
�=��

= 0, �5�

being �k,� as the phase of the continued fraction G�k ,��.
Correspondingly, �T�2		k�G�k ,���2 and �	�k�k,�; hence,
owing to Eq. �5�, we are able to say that in the presence of
Anderson localization occurring with multiple resonances, as
produced, e.g., by broadband excitations, for each resonance

�� the transmission spectrum exhibits extrema in the ampli-
tude and the group delay.

III. SAMPLE AND NUMERICAL SETUP

The previous general arguments have a universal charac-
ter and apply to a variety of different situations; in order to
make a specific example and verify the validity of our theo-
retical approach, we resorted to first-principles FDTD paral-
lel simulations. To consider a realistic sample of disordered
colloidal system, we used MD simulations, which furnish a
distribution of 8000 monodispersed spheres with radius r and
filling fraction 
 in air interacting with a Lennard-Jones po-
tential. We first consider two different materials with r
�150 nm at a filling fraction 
�0.55: Silica SiO2 glass
�n�1.5� and titanium dioxide TiO2 in its Rutile form �n
�2.5�. With reference to realistic frequency-comb genera-
tors, we tailored the temporal profile of the impinging pulse
so that its spectral content is centered around the carrier fre-
quency f0=375 THz��0=800 nm�, and regularly spaced be-
tween 320 and 430 THz by a repetition rate f rep�90 GHz.
The input pulse E�t�=�nsin�2�fnt�, where the sum is per-
formed over 1000 equispaced frequencies fn �Fig. 2�.

In our numerical experiments, we take a train of ul-
trashort, y-polarized pulse impinging on the x-y face of the
sample at normal incidence. The input spatial profile is
Gaussian TEM00 with waist w0=1 �m. 10 ps runs take one
hour by using 1024 processors on an IBM system.

For each simulation, we collect: �i� the spatial profiles of
the electric field at the output plane of the sample; �ii� the
electromagnetic energy E, and �iii� the corresponding spec-
trum. Afterward, we calculate: �a� the group delay as the
derivative, with respect to frequency, of the phase of Fourier
transform of the electric field; �b� the frequency-resolved op-
tical gate signal IFROG�� ,�� as

IFROG��,�� 	 ��
−

+

Ey�t�Ey�t − ��e−i�tdt�2

, �6�

FIG. 2. �Color online� TiO2 refractive index n vs frequency, as
obtained from the Sellmeier equation after Devore �Ref. 30�. The
filled area corresponds to the frequency-comb spectrum. The inset
shows the input pulse.
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where Ey�t� is the output signal, which corresponds to the
complex signal st from TDCMT above.

IV. NUMERICAL RESULTS

The first signature of the existence of localized modes in
TiO2 is found by looking at Figs. 3�a� and 3�b�, where we
notice a drastic change in the spatial profile of the Energy E
from extended states in SiO2 �Fig. 3�a�� to localized states in
TiO2 �Fig. 3�b��. To characterize the presence of localized
modes, we compute the FROG signal IFROG�� ,��.27,31,32 Fig-
ure 3 shows IFROG�� ,�� calculated by the Eq. �6�: panel �c�
corresponds to the field Ey�t� coming out by SiO2, while
panel �d� refers to TiO2. The FROG signal is able to detect if
the strong localization is set in the medium. Indeed, the pat-
tern in the right panel �d� displays a spectrogram in which all
the frequencies �reported in the y axis� survive for longer
time ��1.2 ps� with respect to the case of Silica glass in
panel �c� ��0.2 ps� �note that the FROG spectrum is
doubled with respect to the field spectrum�. This observation
is in agreement with the emergence for TiO2 of several lo-
calized modes with a long lifetime, corresponding to ampli-
tude peaks and longer delays. Comparison with our theoret-
ical predictions can be tackled through the spectral analysis
on the Fourier transform T��� of the output pulse Ey�t�,

T��� = A���exp�i
�n���

c
L� = A���ei����. �7�

The derivative d� /d� is equal to the product between the
inverse of group velocity vg=d� /dk and the distance L cov-
ered by the incident pulse at the end of the sample that is the
group delay �g=L /vg.

Figure 4 shows the squared modulus A2���= �T����2 and
the group delay �g���: we compare the results for SiO2 �Fig.
4�a�� with those TiO2 �Fig. 4�b��. The transmission gives for

the transport mean free path l�0.6 �m for TiO2�kl�5� and
l=10 �m for SiO2�kl�80�. Localization is accompanied in
TiO2 by the formation of several peaks for A2��� and �g���
�absent for SiO2� in agreement with theoretical predictions.
Note that due to the multiple couplings �i.e., from a resonant
state to another or mediated by back-coupling to the input
beam�, both minima and maxima for the delay and the am-
plitude are obtained �corresponding to mixed side-coupling
and forward-coupling regimes for optical cavities�.28 Such a
response is a universal feature that we found for any consid-
ered disorder realization. We also compared dispersive and
nondispersive materials, which resulted into quantitatively
different distribution of peaks �not shown�, while retaining
for both cases the predicted features.

The link between the amount of disorder and the onset of
Anderson localization is a key issue. Previous numerical in-
vestigations for 3D photonic crystals23 showed that the local-
ization length is minimal for a specific degree of disorder.
Notwithstanding the fact that we are considering a com-
pletely disordered regime, well beyond the perturbative re-
gime considered in Ref. 23, here, one expects that such an
optimal condition corresponds to the largest fluctuations of
the group delay. Hence, we compared various TiO2 struc-
tures exhibiting different filling fractions, as obtained by
varying the radius of the �eventually overlapping, as in po-
rous media, see insets in Fig. 5 below� spheres. The filling
fraction 
 is adopted here as a measure of the degree of
disorder, indeed, for low �high� 
 the structure is mainly by
air �TiO2�, and can be taken as an ordered, homogeneouslike,
system: an optimal value for 
 must exist for Anderson me-
diated electromagnetic resonances.

In Fig. 5, we show the spectra attained for three difference
values of 
, the group delay are clearly more pronounced in
the panel �b�. In the bottom panel we show the maximum
group delay versus the filling fraction that displays the great-
est values in the range 
� �0.3,0.5�, corresponding to opti-
mal disorder for the localization. Note that a modulated am-
plitude is also present for large 
 �right panel�, but the
attained delays are much smaller than for 
�0.4 �or vanish-
ing as in Fig. 4�a� above�; this is related to boundary reflec-
tions �for large 
 the whole structure is a cube resonator�
and “subcritical” �i.e., weakly� localized stated. Indeed,
Anderson localization is signaled by the presence of large
modulations in both the transmission and in the delay; at
variance with the one-dimension case �see, e.g., Ref. 25�, in
3D a modulated transmission does not necessarily corre-

FIG. 3. �Color online� Slices �x ,z� �in the middle of y axis� of
the electromagnetic energy E, resulting from dispersive simulations
of �a� SiO2 and �b� TiO2. Corresponding FROG signal of the trans-
mitted pulse �Ey� for �c� SiO2 and for �d� TiO2.

FIG. 4. �Color online� Squared modulus of the Fourier trans-
form of Ey �dashed line, left axis� and group delay �continuous line,
right axis� for �a� SiO2 and �b� TiO2. The vertical axis of the group
delay is shifted such that the zero corresponds to the exit time of the
low frequency side of the input spectrum.
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spond to an Anderson localization. On the other hand, the
narrow and sharp flat region for the delay versus 
 in Fig. 5
signals the existence of two phases �i.e., diffusive and local-
ized�; large delays for a specific disorder are directly related
to the onset of the strong localization, which also results in

the FROG signal in Fig. 3. We stress that the attained maxi-
mum delays for the various 
 in the “optimal region” corre-
spond to different resonances, thus denoting a largely fre-
quency dependent regime, if compared to a shallow diffusive
propagation.

V. CONCLUSIONS

We have reported on the universal features of the Ander-
son localization of light in the presence of an ultrawide band
excitation. We have shown that strong localization phenom-
ena can be discriminated by the appearance of a resonantlike
response in the amplitude and by the group delay versus
frequency, which is maximum at a specific disorder that can
be interpreted as the optimal configuration for trapping light
in a random material.
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